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(Scientific American, 2023) 

 
In terms of the foundations of mathematics, my position (point of view) is based on 
the following two main principles (or opinions): (1) No matter which semantics is 
applied, infinite sets do not exist (both in practice and in theory). More precisely, any 
description about infinite sets is simply meaningless. (2) However, we still need to 
conduct mathematical research as we have used to. That is, in our work, we should 
still treat infinite sets as if they realistically exist. (Robinson, 1964) 
 
While others are still trying to buttress the shaky edifice of set theory, the cracks that 
have opened up in it have strengthened my disbelief in the reality, categoricity or 
objectivity, not only of set theory but also of all other infinite mathematical structures 
including arithmetic. (Robinson, 1973: p. 514) 
    

1. Introduction 
 
In this paper, we review the positions of some mathematicians and logicians who are 
skeptical about the existence of real numbers as standardly defined, along the lines of 
the opening quotes by Abraham Robinson, primarily due to the problem of the actual 
infinite.  We are not concerned here in detail with the foundations of set theory, 
particularly transfinite set theory, which was subjected to a controversial critique by 
Wittgenstein (Rodych, 2000), nor with the  more rigorous critique than Wittgenstein’s 
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by Rescher and Grim (2011) (see also (Feferman, 1989, 1998). Rescher and Grim noted 
that set theory still faces paradoxes insofar as the power set theorem, or in some 
systems, power set axiom, while provable, can be subjected to counter-examples which 

cannot be ruled out as items such as the set of all sets can. Thus, the set of all truths: 
for each subset of this set there will be a truth, so there will be at least as many truths 
(defined as not sets) as there are elements of the power set, contradicting the power 
set theorem. Likewise for the set of thoughts and facts, which should form coherent 
sets as much as the set of all apples. As Rescher and Grim reflect:                                                     
 

Set theory was born in paradox, was shaped by paradox, and continues to carry the 
threat of paradox into its current adolescence. Properly understood … the threat of 
contradiction is not merely formal and is not to be evaded by merely formal 
techniques. The fact that there can be no set of all non-self-membered sets might be 
shrugged aside as a minor logical surprise. Beyond Russell’s paradoxical set, however, 
there are serious philosophical difficulties of coherently conceptualising a set of all 
things, the realm of unrestricted quantification (or even the sense of restricted 
quantification), the totality of all events, all facts, all propositions, or all that is true. 
Sets are structurally incapable of handling any of these. (Rescher & Grim, 2011: p. 6) 

 
We have discussed philosophical problems with sets in another paper (Smith & 
Stocks,2024) (see also, controversially, (Lin et al., 2008; Zhu et al., 2008a, 2008b, 2008c, 
2008d, 2008e, 2008f, 2008g, 2008h, 2008i, 2008j, 2008k; Wildberger, 2015). 
 

Finitism views the very presence of infinity in number theory as problematic, 
primarily on philosophical grounds, rather than being proven to be explicitly 
contradictory (Van Dantzig, 1956; Isles, 1992; Van Bendegem, 1994, 2000, 200, 2003  
Ultra-finitists reject even potential infinities, such as the notion of a set of natural 
numbers, holding that numbers must be physically realizable (Yessenin-Volpin, 1970, 
1981; Zeilberger, 2015)) and that mathematics can be “reduced to manipulations with 
a (finite!) set of symbols” (Zeilberger, 2015). In this spirit there have been some fertile 
attempts to reconstruct classical mathematics, including geometry, metric space 
theory, complex analysis, Hilbert spaces, analysis, and number theory without the use 
of the concept of infinity, within the framework of mathematical naturalism and 
nominalism (Parikh, 1971; Shepard, 1973; Mycielski, 1981; Lavine, 1995; Ye, 2011; 
Maudlin, 2014). As far as we are aware, a complete reworking of classical mathematics 
has not been fully completed, so technically it may be said that the spectre of infinity 
still haunts classical mathematics. That being said, let us now examine some theorists 
who see difficulties with the classical mathematical conception of real numbers, as 
suggested in the opening quotes of this paper from Robinson, seeing the notion of 
infinity raising problems for structures such as the real numbers for example. 
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2. Chaitin and Borel 
 
Gregory Chaitin has argued that here are computational difficulties with real numbers 
(Chaitin, 2004). This, he claims, refutes the notion that real numbers underlie the 
physical furniture of the world. Physical reality may be digital and computational 
(Chaitin, 2005). The first objection Chaitin cites was made by E. Borel in 1927, Borel’s 
“amazing know-it-all number.” Thus, if real numbers are infinite sequences of digits, 
then all of humanity’s knowledge can be encoded in a single number (Borel, 1950). 
The number is written in binary with the nth bit of the binary expansion giving an 
answer in a natural language to the question, yes=1, no =0. Borel thought that such a 
number was “unnatural” and not a real number at all because of its artificiality. So, he 
concluded, there is no reason to believe that such a number existed (Borel, 1952). That 
may well be so, but it shows only that the know-it-all number does not exist, not that 
there is therefore a problem with real number theory itself. Further, the claim of the 
number being merely “unnatural,” is not a telling objection to the existence of real 
numbers, if that is Chaitin’s aim. What is “natural”? 
 

Chaitin observed that Borel mentioned another alleged paradox, that of 
“inaccessible numbers.” He asserted that real numbers only exist if they can be defined 
and expressed in a finite number of words, using a natural language such as French 
or English. This yields a countable infinity of tests for possible expression. But he then 
argues, there is a supposed denumerable infinity of reals having measure zero. Thus, 
there will be via diagonalization, reals that cannot be described, contrary to Borel’s 
existence assumption. 
  

Chaitin develops this argument for uncomputable reals. The set of all possible 
computer programs is countable. So, the set of computable reals is countable, measure 
zero. By diagonalization, an uncomputable real can be constructed. The key issue here, 
Chaitin says, is this: if such real numbers are unknowable, why believe in them? 
Chaitin reinforces this claim with a version of Richard’s paradox, by diagonalization 
over all nameable reals to produce a nameable, but also unnameable real. The set of 
reals is uncountable, the set of all possible texts in a natural language such as English 
is countable. Hence the set of all possible mathematical questions being formulated in 
a natural language is countable too. So, there are by diagonalization real numbers that 
cannot be defined and are unnameable. However, this is itself a definition or name of 
the number, hence a version of Richard’s paradox. 
 

In response to this, one counter-argument would be to deny that the set of all 
possible texts in a natural language such as French is countable, or that there is a 
countable infinity of texts for possible expression in a natural language. The real 
numbers occur in a natural language, and we are writing about them now. Thus, 
nothing prevents natural language sentences being given a real number index, say 



4 
 

adding “index expression R,” to any sentence, in order to produce a 1-1 
correspondence between the reals and these indexed natural numbers, hence 
defeating he Borel-Chaitin argument which requires natural language sentences to be 
countable, while the reals are uncountable. 
 

Further, from the perspective of classical mathematics which accepts actual 
infinities, it could be maintained that the Borel-Chaitin argument is question begging 
as unknowable reals are nothing more than a product of the infinity of the reals, with 
the finite nature of mathematicians. For classical mathematics, this is all part of the 
course … of course.           
 
3. B.H. Slater 
 
Western Australian philosopher and logician, B. H. Slater has rejected the idea that 
numbers are sets, seeing this position “based on a series of grammatical confusions” 
(Slater, 2006: p. 59). Thus, the empty set is not the number zero, but rather the number 
of elements in the empty set is zero, not the set itself. To characterize the empty set 
requires prior recognition that the set is empty, having no members, which means that 
the number of elements in the set is zero. So, defining zero in terms of the empty set 
will be circular, and this is the foundation of the natural numbers according to a 
number of positions in the philosophy of mathematics. Indeed, Slater believes that set 
theory does not give a correct account of the use of collective terms in general, terms 
such as “flock” and “groups” (Slater, 1998: pp.144-156). 
 

Slater rejects the idea that there is a determinate, let alone infinite number of 
natural numbers. He believes that two alleged “infinite sets,” even if put in a supposed 
1-1 correspondence, may not have the same cardinality as they may have no 
determinate number at all (Slater, 2002: p.34). There is no number of the natural 
numbers, the reals, or of the continuum, (Slater, 2002: pp. 35-39), and no irrational 
numbers: 
 

[I]f we define them not in terms of impossible Platonic limits but merely convergent 
sequences of rational numbers, then we are identifying “irrational” numbers with 
certain functions, since sequences are functions from the natural numbers. But the 
description “number” is then strictly a misnomer since a function is not a number, 
even if each of its values is one. (Slater, 2002: p.38)  

  
Slater has also made an attack upon the Weierstrass classic definition of the 

derivative in the differential calculus, because it presupposes a non-finitist definition 
of the real numbers involving infinity (Slater, 2002: pp. 171-177). While these remarks 
are provocative, we believe that the same points have been argued for in more depth 
by fellow Australian mathematician N.J. Wildberger, whose work will now be 
considered. 
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4. N.J. Wildberger 
 
N.J. Wildberger has given a comprehensive critique of classical mathematics in a 
number of lectures posted on YouTube. As this breaks somewhat academic 
conventions, which favors the printed word, referencing is difficult in this format, and 
URLs for YouTube are annoying to type, we find. Thus, it is more convenient to list 
the titles of the main lectures in the main text, which an interested reader could type 
into the YouTube search engine. The lectures of  relevance include: “A Socratic Look 
at Logical Weaknesses in Modern Mathematics”; “Mathematical Space and Basic 
Duality in Geometry”; “Mathematics without Real Numbers”; “The Mostly Absent 
Theory of Real Numbers”; “The Decline in Rigour in Modern Mathematics”; “Logical 
Weaknesses in Modern Mathematics”; “Deflating Modern mathematics; The Problem 
with ‘Functions’”; “Reconsidering ‘Function’ in Modern Mathematics”; “Modern Set 
Theory—Is It a Religious Belief System?” “The Continuum, Zeno’s Paradox, and the 
Price We Pay for Coordinates.” 
 

Wildberger argues that due to the use of the concept of infinity in classical 
mathematics, “fundamental concepts of calculus, such as continuity, the derivative 
and integral, rest on the idea of “completing infinite processes” and/or performing an 
infinite number of tasks” (Wildberger, 2015a, 2015b; see also 2006, 2012, 2021). His 
position is that conventional real number theory has conceptually insecure 
foundations, as real numbers do not exist and neither do infinite sequences. The theory 
of real numbers was heavily influenced by Cantor’s theory of infinite sets, and he sees 
no justification for the postulation of infinite sets. 
 

Real numbers have been viewed in three main ways: infinite decimals, 
Dedekind cuts, and Cauchy sequences of rational numbers, and Wildberger believes 
that all of these views have insuperable problems. Starting with the position that real 
numbers are infinite decimals, Wildberger’s main criticism, apart from seeing the 
concept of infinity as inherently problematic, is that there is a major problem of how 
to do operations such as multiplication, division, addition, and subtraction for two (or 
more) non-periodic infinite decimals. Usually, irrationals such as √2 and 
transcendental numbers such as e, can be manipulated as symbols and left as that, but 
in general it is not possible to decide if given statements involving operations on 
infinite decimals is correct, by a program, algorithm or function, and “infinite 
patterns” may not be characterized by a finite rule. 
 

Wildberger does not mention that the formal construction of real numbers as 
infinite decimals was undertaken by mathematicians such as Karl Weierstrass and 
Otto Stolz, but not solved. There are more recent attempts (Fardin & Li, 2021; Richman, 
1999; Klazar, 2009; Hua, 2012; Gower, n.d.), which seem to have solved the formal issue 
of definition, but not the practical issue raised by Wildberger, of how actually to do 
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the calculations with non-trivial examples. Therefore, while it seems that there can be 
a formal account of real numbers as infinite decimals, it remains problematic from an 
applied position. However, in section 7 below we will argue that use of infinite 
decimals and processes can generate contradictions. 
 

Wildberger rejects the Dedekind cut account of the real numbers. This 
approach defines a cut of the rationals as an ordered pair <A, B> of sets such that: 
 

(1) A and B are not the null set. 
(2) A ∪ B= the set of rational. 
(3) If x ∈ A and y ∈ B, then x < y. 

 
And some add: 
 

(4) A has no greatest element (for any a in A, there exists a' in A such that a < 
a'). 

 
A is the lower class and B the upper class, with every element of A preceding every 
element of B. Real numbers are sections of the rationals (Suppes, 1960: p. 160). A real 
number is then defined as a Dedekind cut, where the cut represents the boundary 
between A and B. For rational real numbers, B has a least element. For irrational 
numbers, B has no least element, as the cut corresponds to a “gap” in the rationals. 
 

Wildberger’s primary objection to the Dedekind cut account of real numbers is 
that Dedekind cuts rely on infinite sets, which he considers ill-defined. A Dedekind 
cut partitions the rational numbers into two infinite sets, A and B, where A has no 
greatest element, and every element of A is less than every element of B. Wildberger 
argues that specifying such infinite sets requires an infinite process, which is not 
constructively feasible. He asserts that mathematics should be restricted to finite, 
computable objects, and infinite sets like those in Dedekind cuts lack a concrete, 
verifiable basis. 
 

He further criticizes the practical utility of Dedekind cuts, particularly for 
transcendental numbers like π or e. While the cut can be readily given for relatively 
“straightforward” numbers, defining cuts for numbers without simple algebraic 
properties involves complex, uncomputable specifications. Wildberger asserts that 
this makes Dedekind cuts “undecidable” in practice, since one cannot algorithmically 
determine whether a given rational belongs to A or B for arbitrary cuts. This, he 
argues, undermines their claim to define real numbers rigorously. 
 

Wildberger also questions the philosophical underpinning of Dedekind cuts, 
claiming that they simply assume the continuum they aim to construct. He echoes 
concerns raised by some mathematical philosophers that the “gap” between A and B 
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presupposes a real number line, introducing circularity. In Wildberger’s view, the 
reliance on axiomatic set theory—for example, ZFC—to justify infinite sets is a 
“sleight-of-hand,” avoiding the need explicitly to construct mathematical objects 
before using them. 
 

However, Wildberger’s critique is open to counterarguments. Mainstream 
mathematicians would argue that Dedekind cuts are a logically consistent 
construction within set theory, requiring no prior assumption of the real number line. 
The total order of the rationals suffices to define cuts, and the resulting set of cuts 
satisfies the axioms of a complete ordered field, uniquely characterizing the reals up 
to isomorphism. Critics can argue that his rejection of infinite sets is a philosophical 
stance, not a proof of inconsistency. Wildberger’s critique of Dedekind cuts reflects his 
broader finitist philosophy, emphasizing computability and rejecting infinite objects. 
While his arguments highlight challenges in specifying infinite sets, they do not 
invalidate Dedekind cuts within the framework of classical mathematics, since 
classical mathematics would reject his finitism, which they would argue, begs the 
question against them.  

 
Much the same critique can be made to the constructivist critique of Dedekind 

cuts. L.E.J. Brouwer and Errett Bishop challenged Dedekind cuts for their non-
constructive nature. Constructivism requires that mathematical objects be explicitly 
computable or constructible in finitely many steps. A Dedekind cut, as a pair of infinite 
sets, often cannot be algorithmically specified, especially for transcendental numbers 
like e. For example, determining whether a rational q belongs to set A or B for the cut 
representing e requires an infinite amount of information about e’s decimal expansion, 
which is not computable in practice. Intuitionism, as developed by Brouwer, rejects 
the law of the excluded middle and emphasizes mathematics as a mental construction. 
Intuitionists have questioned Dedekind cuts for assuming a completed infinity of 
rational numbers. In intuitionist logic, a set is not a fixed entity but a process of 
construction, and the infinite partition of rationals into A and B presupposes a 
“finished” continuum. For instance, Brouwer argued that the real number line is not 
a pre-existing object but an evolving construct, and cuts imply a static view 
incompatible with this philosophy (Heyting, 1971). The problem here is that classical 
mathematicians will simply reject intuitionism and constructivism, seeing them as 
limiting mathematics, and claiming that there is no no-circular reason for accepting 
these positions. 
 

The circularity objection is that the cut definition of the reals assumes a total 
order on the rational numbers and again the existence of infinite sets, which some 
finitists argue implicitly relies on a conception of the continuum that the cuts are 
meant to construct (Parsons, 1990). However, this is not a formal circularity in ZFC set 
theory, as the circularity concern is mitigated by noting that the rational numbers’ 
total order is sufficient to define cuts without assuming the reals. While it does raise 
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questions about whether Dedekind cuts truly explain the reals or merely formalize an 
intuitive continuum, the classical mathematician will not be disturbed by this. We will 
return to a critique of the Dedekind account of real numbers after a discussion of real 
numbers as Cauchy sequences, also rejected by Wildberger. 
 

The Cauchy sequence approach defines real numbers as equivalence classes of 
Cauchy sequences of rational numbers, a method developed by Georg Cantor. 
 

Rational Numbers: Let Q denote the set of rational numbers (numbers that can 
be written as a/b, where a and b are integers and b ≠ 0). 
 
Sequences: A sequence of rational numbers is an ordered list of numbers from 
Q, written as {a_n}, where a_n is the n-th term (n = 1, 2, 3, ...).  
 
Cauchy Sequence: A sequence {a_n} of rational numbers is called a Cauchy 
sequence if the terms get arbitrarily close to each other as n increases. Formally, 
for every positive rational number ε > 0, there exists a positive integer N such 
that for all m, n > N, the absolute difference |a_m - a_n| < ε. 
 
Equivalence Relation: Two Cauchy sequences {a_n} and {b_n} of rational 
numbers are equivalent if the sequence of their differences converges to zero. 
That is, {a_n} ~ {b_n} if for every positive rational number ε > 0, there exists a 
positive integer N such that for all n > N, |a_n - b_n| < ε. 
 
Equivalence Classes: An equivalence class of a Cauchy sequence {a_n} is the set 
of all Cauchy sequences {b_n} that are equivalent to {a_n} under the relation ~.  
 
We denote this equivalence class by [{a_n}]. 
 
Real Numbers: The set of real numbers, denoted R, is the set of all equivalence 
classes of Cauchy sequences of rational numbers under the equivalence relation 
~. 
 

For example, the real number 2/3 is the equivalence class of all Cauchy sequences of 
rational numbers converging to 2/3. Examples of such sequences include: 

 
{2/3, 2/3, 2/3, ...} 
{0.666, 0.6666, 0.66666, ...} 
{2/3, 4/6, 6/9, 8/12, ...}  
 

and so on, for “infinity.” 
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The equivalence class [{2/3, 2/3, 2/3, ...}] contains all sequences {a_n} such that 
for every ε > 0 in Q, there exists N (a positive integer) such that for all n > N, 
|a_n - 2/3| < ε. 

 
The set of all such equivalence classes, equipped with appropriate definitions of 
addition, multiplication, and order, forms a complete ordered field, identified as the 
real numbers. Completeness ensures that every Cauchy sequence of real numbers 
converges to a real number, resolving the “gaps” in the rational numbers.              
 

Wildberger’s objections to Cauchy sequences mirror his critique of Dedekind 
cuts but focus on specific issues with sequences and their equivalence classes. 
 

Infinite Processes and Non-Constructivity: Wildberger argues that Cauchy 
sequences rely on infinite processes, which are not constructively feasible in a finitist 
framework. Verifying that a sequence is Cauchy requires checking infinitely many 
terms to ensure all pairs beyond some N satisfy the epsilon condition. For example, a 
sequence approximating the square root of 2 may appear Cauchy, but confirming this 
property involves an infinite task, which Wildberger deems mathematically suspect. 
He insists that mathematical objects must be finitely specifiable and computable, and 
Cauchy sequences fail this test for most real numbers, especially transcendentals like 
π or e. 
 

Equivalence Classes as Abstract and Ill-Defined: Wildberger criticizes the use 
of equivalence classes to define real numbers. Grouping all Cauchy sequences 
converging to the same limit (for example, different sequences approximating the 
square root of 2) into a single real number involves an infinite collection of infinite 
objects. He argues that this abstraction is philosophically problematic, as it assumes 
the existence of uncountably many such classes without explicitly constructing them. 
In his view, this reliance on set-theoretic machinery (for example, ZFC) obscures the 
lack of a concrete foundation for real numbers, making the construction “a house of 
cards.” 
 

Practical Impracticality for Transcendental Numbers: Wildberger highlights 
the difficulty of defining Cauchy sequences for transcendental numbers like π or e. 
While algebraic numbers like can be approximated by algorithms, transcendental 
numbers often lack simple recursive definitions. Specifying a Cauchy sequence for π 
requires an infinite amount of information about its digits, which Wildberger argues 
is not practically achievable. He contends that this renders the Cauchy sequence 
construction “undecidable” in practice, undermining its claim to rigor. 
 

Philosophical Objection to Completeness: Wildberger questions the need for 
a complete number system that Cauchy sequences aim to achieve by ensuring every 
sequence converges to a real number. He argues that rational numbers, supplemented 
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by algebraic extensions (for example, treating the square root of 2 as a symbol 
satisfying x2 = 2), suffice for most mathematical purposes. The insistence on 
completeness, he claims, introduces unnecessary complexity and philosophical 
baggage, driven by an unproven assumption that infinite limits are meaningful. 
Wildberger proposes alternatives like working strictly with rational numbers or finite 
algebraic fields, as in his “rational trigonometry,” which avoids real numbers 
altogether. He believes these approaches are more concrete and computationally well-
grounded. 
 

Mainstream Counterarguments: Mainstream mathematicians defend Cauchy 
sequences as a logically consistent construction within set theory, requiring no infinite 
computation to define the equivalence classes formally. The completeness property is 
essential for analysis, enabling results like the Intermediate Value Theorem, they 
contend. Critics may argue that Wildberger’s finitism sacrifices expressive power for 
philosophical purity, limiting mathematics’ ability to model continuous phenomena. 
The reliance on equivalence classes is seen as a standard abstraction, not a flaw, and 
computational approximations (for example, decimal expansions) align well with 
Cauchy sequences in practice. Infinite processes are seen as foundational, so once 
more the classical mathematician would reject Wildberger’s critique based upon 
finitism, as question begging. 
 
5. A Benacerraf-Inspired Critique of Real Numbers 
 
Our critique of both the Dedekind cut and Cauchy sequence definitions of real 
numbers adapts and updates Paul Benacerraf’s 1965 argument from “What Numbers 
Could Not Be” (Benacerraf, 1965), which challenges the identification of numbers with 
specific set-theoretic objects. Benacerraf argued that natural numbers could be defined 
as different set constructions (for example, von Neumann ordinals or Zermelo 
ordinals), but equating these sets leads to absurdities, suggesting numbers are not sets 
but structural entities. We extend this to real numbers, noting that a real number R can 
be defined as a Dedekind cut, a set D, a partition of rationals into two subsets, or as an 
equivalence class of Cauchy sequences, a set C. By the principle of identity, if R = D 
and R = C, then D = C. Equating these sets is ontologically absurd, because they are 
fundamentally different kinds of objects, implying that R is neither.  
 

This argument highlights the ontological ambiguity in defining real numbers. 
A Dedekind cut for a real number like the square root of 2 is a pair of sets of rationals, 
while a Cauchy sequence is an equivalence class of infinite sequences (for example, 
sequences like 1, 1.4, 1.414, ...). These are structurally distinct: cuts are partitions of a 
set, while Cauchy sequences are collections of functions from natural numbers to 
rationals. Equating them as identical sets is problematic, since their elements and 
constructions differ. For instance, the set D  contains rational numbers, while C 
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contains sequences of rational numbers, making D = C  incoherent in set-theoretic 
terms. 
 

This mirrors Benacerraf’s point that multiple set-theoretic reductions of a 
mathematical object create ontological ambiguity, we would say ontological 
inconsistency. If real numbers can be “reduced” to different set-theoretic objects, their 
identity seems arbitrary, suggesting that real numbers are not inherently sets but 
perhaps abstract entities defined by their structural role in a complete ordered field. 
This aligns with structuralist philosophies, as advocated by Benacerraf and later by 
Stewart Shapiro, which view numbers as positions in a system rather than specific 
objects (Shapiro,1997). 
 

However, the mainstream mathematical response, based in set theory (for 
example, ZFC), is that Dedekind cuts and Cauchy sequences are not claimed to be 
identical sets but are isomorphic constructions of the real numbers. Both define 
systems that satisfy the axioms of a complete ordered field, and category theory shows 
they are equivalent up to isomorphism. The real number R is not literally the set D or  
C,  but an element in a system defined by either construction. Thus, the identity D = C 
is not asserted; rather, D and C are different representations of the same abstract 
entity. This supposedly avoids the ontological absurdity by denying that R is identical 
to either set in a naive sense. 
 

It could also be objected that our argument assumes a strict set-theoretic 
ontology, where mathematical objects must be specific sets. Structuralists counter that 
real numbers are defined by their relations (for example, ordering, and arithmetic 
operations), not by their implementation. On this view, the choice of Dedekind cuts 
or Cauchy sequences is a matter of convenience, like choosing different coordinate 
systems in geometry. The “absurdity” of equating D and  C  dissolves if real numbers 
are not sets but placeholders in a structure, as mathematical structuralists propose. 
 

We counter-argue against this critique by maintaining that the claim made by 
mainstream mathematicians that claiming D and C are isomorphic representations, 
not identical sets, and that R is an element in the system they define (the complete 
ordered field), does not address the neo-Benacerraf critique. Using “=” suggests an 
ontological identity that conflicts with the claim of non-identity; if there is no identity 
then the classical mathematician is not justified from a logical point of view in using 
“=”. Multiple set-theoretic reductions (undermine the idea that numbers are Dedekind 
cuts or Cauchy sequences, regardless of any view of them being isomorphic 
representations; arguably both positions apply, and ontological inconsistency follows 
regardless. 

Without going into much detail of the structuralism debate, we note that there 
are strong criticisms of the position. Structuralism, as defended by Stewart Shapiro for 
example, posits that mathematical objects like real numbers are positions in a structure 
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(for example, the complete ordered field), not specific objects like D or C. But 
structuralism’s reliance on abstract structures is ontologically problematic (Hellman, 
1989). If real numbers are merely roles in a structure, what is the structure itself? 
Structuralism seems to require the existence of a system (for example, the set of all 
Dedekind cuts), which presupposes set theory or another foundational framework, 
risking circularity or infinite regress. This suggests that structuralism does not resolve 
the ambiguity of D vs. C but shifts the problem to the ontology of structures. 
 

 Penelope Maddy, in Realism in Mathematics, notes that structuralism struggles 
with the identity of mathematical objects (Maddy,1990). If two structures are 
isomorphic (for example, Dedekind cuts and Cauchy sequences), structuralism treats 
their elements as identical, but this erases potential distinctions. This implies that 
structuralism glosses over the ontological differences between D and C, which is a 
flaw in equating them to R. Defining real numbers as structural roles introduces its 
own philosophical problems, failing to fully resolve the D = C absurdity. 
 

Mathematical structuralism simply relabels the metaphysical problem of real 
number identity without resolving it. The structuralist insists that mathematics is 
about structures, not objects, but never adequately addresses what these structures 
are, or how we access them. 
 

Structuralism trades objects for structures, but it does not eliminate ontological 
commitment, it transfers it. Instead of committing to the existence of sets or numbers, 
it now commits to the existence of vast, often infinite structures like  the continuum. 
But for the finitist, this is precisely the problem. Such structures are neither 
constructible nor epistemically graspable. They are invoked in toto, as already-formed 
infinite systems. 
 

But what does this mean? From a finitist perspective, you cannot assert the 
existence of a position without asserting the existence of what occupies it. A “point” 
on the real number line is meaningless if you cannot finitely specify or verify it. The 
structuralist posits positions without content—forms without substance. 
 

Structuralists attempt to evade Benacerraf’s argument by denying that 
numbers are sets. But they retain the idea that mathematical entities are identifiable 
by their role in a system. Yet different set-theoretic models (for example, Dedekind 
cuts vs. Cauchy sequences) describe the same “role” with different underlying 
elements. This leads structuralists to claim that only the position in the abstract 
structure matters. 
 

However, if the “role” of √2 is only ever realized by different proxies, none of 
which is identical to any other, then no object has been specified. This undermines the 
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claim that structuralism explains identity at all. For the finitist, without explicit, 
finitely realizable identity, there is no mathematical object. There is only semantic fog. 
Hence, we have an independent argument standing outside of finitism, that we can 
use to attack the infinitism of classical mathematics, and thus enable Wildberger’s 
critique to go through. 
 
6. Critique of  Other Accounts of Real Numbers 
 
The other major accounts of real numbers—continued fractions, Eudoxus reals, metric 
completion, axiomatic fields, hyperreals, and choice sequences—rely on sets in 
classical mathematics, with intuitionism offering a partial exception. 
 

Continued Fractions: Real numbers can be defined via continued fractions, 
where a number is represented as an infinite expression of the form a_0 + 1/(a_1 + 
1/(a_2 + …)), with a_0 an integer and a_i positive integers for i ≥ 1. Formally, this is a 
sequence of integers (a_n), and the real number is the limit of the sequence of rational 
convergents. This construction requires set theory, as the sequence is an element of 
the set of all infinite sequences of integers, and equivalence classes may be used to 
handle different representations. While computationally elegant for algebraic 
numbers, it shares the set-theoretic reliance of Cauchy sequences, defining real 
numbers as infinite objects within a set-theoretic framework. 
 

Eudoxus Reals (Constructive Approach): Inspired by Eudoxus of Cnidus and 
revived in constructive mathematics, real numbers can be defined as “almost 
homomorphisms” from the rationals to the integers. A real number is a function f: Q 
→ Z such that for all rationals p, q, |f(p + q) - f(p) - f(q)| ≤ 1, with additional 
boundedness conditions. For example, the square root of 2 is approximated by a 
function mapping rationals to integers based on their proximity to square root of 2. In 
constructive settings this avoids equivalence classes but still uses sets, as the function 
f is an element of a set of functions. In classical mathematics, this is embedded in set 
theory, though constructive versions emphasize computability, aligning partially with 
our interest in decimals’ computational flavor. 
 

Completion of the Rationals (Metric Space Approach): Real numbers can be 
defined as the metric completion of the rational numbers under the absolute value 
metric. This generalizes the Cauchy sequence construction, viewing the reals as the 
“points” added to make the rationals complete (every Cauchy sequence converges). 
Formally, this involves equivalence classes of Cauchy sequences or a topological 
construction, both reliant on set theory to define the space of sequences or points. For 
example, the square root of 2 emerges as the limit point of sequences like 1, 1.4, 1.414, 
…. This approach is abstract and heavily set-theoretic, as the completion process 
requires sets of sequences or ideals in a topological space. 
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Axiomatic Approach (Complete Ordered Field): Real numbers can be defined 
axiomatically as the unique (up to isomorphism) complete ordered field, satisfying 
properties like commutativity, order, and the least upper bound property. This 
approach avoids explicit construction, focusing on the algebraic and order structure. 
However, in practice, proving the existence of such a field requires a set-theoretic 
construction (e.g., Dedekind cuts or Cauchy sequences), as the axioms alone do not 
specify the objects. Even category-theoretic formulations, which emphasize 
morphisms, rely on sets to model the field. Thus, this account indirectly depends on 
set theory.      

 
Non-Standard Analysis (Hyperreals): In non-standard analysis, developed by 

Abraham Robinson, real numbers are embedded in the hyperreals, a field containing 
infinitesimal and infinite numbers. Reals are identified as the “standard” elements of 
this larger structure. This requires set theory, often with additional axioms (for 
example, the axiom of choice), to construct the hyperreals via ultrapowers or non-
standard models of the reals. While philosophically distinct, this approach still defines 
reals within a set-theoretic framework, as hyperreals are sets of sequences or 
equivalence classes. 
 

Intuitionist Choice Sequences:  In L.E.J. Brouwer’s intuitionism, real numbers 
are defined as choice sequences—processes generating rational approximations that 
converge, guided by free choices rather than predetermined rules. For example, a 
sequence for the square root of 2 might be constructed by successively refining 
rationals (e.g., 1, 1.4, 1.414, …) based on computational choices. Intuitionism avoids 
classical set theory’s completed infinities, treating sequences as ongoing processes. 
However, formalizing choice sequences often involves sets of partial sequences or 
lawlike rules, and even intuitionist mathematics uses a weak set-theoretic framework 
to describe collections. Thus, while less set-dependent, this approach still engages 
with set-like structures. 
 

All of these accounts rely on sets in classical mathematics, where Zermelo-
Fraenkel set theory (ZFC) is the standard foundation. Dedekind cuts, Cauchy 
sequences, continued fractions, Eudoxus reals, and metric completions all define real 
numbers as sets or elements of sets (for example, sequences, partitions, or functions). 
The axiomatic approach requires a set-theoretic construction to prove existence, and 
non-standard analysis uses advanced set-theoretic tools. Intuitionist choice sequences 
come closest to avoiding sets by emphasizing processes, but formal treatments often 
involve set-like collections. Non-set-theoretic accounts are rare, as mathematics 
typically requires a framework to organize infinite objects, and sets are the dominant 
tool. Alternatives like category theory (emphasizing morphisms) or type theory (used 
in homotopy type theory) still rely on set-like structures or universes to model real 
numbers. 
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Following the critics of set theory cited in this article, including Rescher and 
Grim, and Wildberger, we may therefore reject all these approaches to defining the real 
numbers as well.    
 
7. Infinite Decimals and a Contradiction 
 
Finally, we conclude with a reconsideration of the account of real numbers in terms of 
infinite decimals. We previously concluded that this account does survive the finitist 
criticisms made against it, most notably, that multiplication and addition are not well 
defined. However, in other papers (Smith, Smith, & Stocks, 2023a, 2023b), we argued 
that a contradiction can be produced with this account and the idea of supertasks, 
completing an infinite number of tasks in a finite time. This notion has been employed 
to deal with Zeno’s paradoxes, and it seems to be the status quo position in this area 
of philosophy of mathematical physics. Robert Hanna has argued that Zeno’s 
paradoxes can be solved without recourse to super tasks, and we concur (Hanna, 
2024). But that being said though, as we noted in our previous paper, supertasks have 
been employed elsewhere in the philosophy of mathematics apart from dealing with 
Zeno’s paradoxes, so we can assume that their use is legitimate, at least for a reductio. 
Summarized, our argument starts with the standard identity:  
 

1.000… = .999… . 
 

Using a supertask, inspired by Hilbert’s hotel, we shift decimals and infinite number 
of times to produce: 
 

1000… = 999… 
 
numbers that violate the Archimedean property and lead to a contradiction, as from 
this, it is easily seen that 1=0 is provable. Since mainstream mathematics accepts 
supertasks, rejecting our supertask is ad hoc. The contradiction suggests the real 
number system is inconsistent. Thus, we force a dilemma: either reject supertasks or 
accept real number inconsistency. While there are as Hanna has shown, alternative 
ways of dealing with Zeno’s paradoxes without use of supertasks, there have been 
decades of work devoted to defending the notion. Here we let it stand for the sake of 
argument, and conclude that what falls is the account of real numbers as infinite 
decimals, while previously we directed our attack against supertasks. 
 

The objections can be countered by accusing our critics of begging the question.  
 

An Objection from Supertask Invalidity: Critics might argue our decimal-
shifting supertask isn’t analogous to Zeno’s convergent series or Hilbert’s Hotel, as it 
produces ill-defined numbers (1000…, 999…) 
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Rejoinder: This begs the question by assuming supertasks are only valid in 
contexts that preserve real number consistency. Since mainstream mathematics 
accepts supertasks (e.g., summing infinite series), it must justify why our 
manipulation is invalid without appealing to the system we’re questioning. Hilbert’s 
Hotel, which allows infinite shifts, supports our case—critics can’t just cherry-pick 
which infinity is “okay.” 
 

The Objection that 999… is hyperreal:  One objection is that 999… is a 
hyperreal, not a standard real, avoiding the contradiction in the real number field. 

 
Rejoinder: This is irrelevant and question-begging. The infinite decimal 

account claims to define standard reals (for example, 0.999… = 1). If 999… is a 
hyperreal, the account fails to consistently define all infinite decimals as reals, proving 
our point. Assuming 999… isn’t a real presupposes the system’s consistency, dodging 
the contradiction we’ve raised. And it does not matter what one calls 999…, as our 
argument still goes through. 
 

An Objection from Archimedean Violation: Critics note that 1000… and 999… 
are non-Archimedean, so they’re not real numbers, as the real field is Archimedean 
by definition. 

 
Rejoinder: We embrace this: “Sure, but since the whole system is inconsistent, 

what do you expect?” If supertasks produce non-Archimedean numbers, the infinite 
decimal account generates entities it can’t handle, exposing its flaws. Assuming the 
system is Archimedean begs the question, as our contradiction (1 = 0) challenges the 
field’s coherence. 

 
An Objection from Practical Success: Mainstream mathematicians might 

argue infinite decimals work in practice (for example, approximating π), so theoretical 
contradictions are irrelevant. 
 

Rejoinder: This begs the question by prioritizing utility over logical 
consistency. If the system is inconsistent, practical success is a house of cards. Our 
skeptical stance demands a foundation free of contradictions, not a pragmatic shrug. 
Our approach mirrors epistemological skepticism by refusing to accept assumptions 
(for example, real number consistency, supertask limits) without independent 
justification, just as according to, say, David Hume’s problem of justifying induction. 
This forces critics to engage with the possibility of systemic inconsistency, or simply 
join Wildberger and other finitists in rejecting the infinitist approach to real numbers, 
which amounts to embracing the skeptical position accepted by Robinson in the two 
quotations used as the epigrams of this paper. 
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As John Lennon might have said: we hope someday you will join us, and the 
world will be one … or at least finite, once more! 
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