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1. Introduction: Sleeping Beauty and Probabilities 
 

The Sleeping Beauty problem was formulated in the mid-1980s (Zuboff, 1990; Elga, 

2000), and predictably enough, it has been intensely debated by Analytic 

philosophers, and also by some mathematicians, with no clear resolution. The 

problem arises from an imaginary experiment that somehow gets ethical approval. 

Sleeping Beauty, for some reason best known to her, volunteers for a bizarre 

experiment on a Sunday. On that day she will be injected with a drug that will put her 
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to sleep. Either once or twice during the experiment she will be awakened by the 

administrator, by another drug. Once awake, she will be interviewed, be told that it is 

Monday, then given yet another drug that causes amnesia, so that she will not 

remember awaking or anything that occurred during the interview. On this basis, 

Sleeping Beauty will not be able to determine what day it is, or whether she has been 

awakened at any time. Her mind, in this respect, is a complete blank. 

 

The experimenters will toss a fair coin to determine the following: 

 

(SB1) If the coin turns up heads, Sleeping Beauty will be awakened and only 

interviewed on Monday. 

 

(SB2) If the coin comes up tails, Sleeping Beauty will be awakened and interviewed on 

Monday and Tuesday, and given the amnesia causing drug. 

 

Whatever happens, Sleeping Beauty will be awakened on Wednesday, and the 

experiment concludes with no interview, but probably some peer reviewed 

psychology paper will be churned out. In any case, after the experiment concludes, 

Sleeping Beauty is asked: what is your credence that the coin landed heads? 

 

2. The Problem of Solutions 
 

The first main response, which is known as the “thirder” position, asserts that the 

probability of heads is 1/3, a position taken by the majority of philosophers addressing 

this problem (Elga, 2000; Dorr, 2002; Monton, 2002; Arntzenius, 2003; Hitchcock, 2004; 

Horgan, 2004). When Sleeping Beauty awakes, she knows that she is in one of these 

situations: 

 

Heads/Monday: The coin landed heads and it is Monday. 

 

Tails/Monday: The coin landed tails and it is now Monday. 

 

Tails/Tuesday: The coin landed tails and it is now Tuesday. 

 

Now, by the principle of indifference, her credence that it is Monday is equal to her 

credence that it is Tuesday, because there is no fact of the matter to distinguish these 

events. Hence: 

 

(SB3) Pr (MondayTails) = Pr (TuesdayTails). 

 

Therefore: 
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(SB4) Pr (Tails & Tuesday) = Pr (Tails & Monday). 

 

On the other hand, if Sleeping Beauty believed that it was Monday and given that Pr 

(TailsMonday) = Pr (HeadsMonday), then: 

 

(SB5) Pr (Tails & Tuesday) = Pr (Tails & Monday) = Pr (Heads & Monday). 

 

Since the three components of the equation (SB5) exhaust the possibilities, the 

probability of their sum is 1, and by the principle of indifference, the probability of 

each component is 1/3 (White, 2006: pp. 115-116). In short, for every “heads-waking, 

there are two tails-waking” (Weintraub, 2004: p. 8), so the probability is 1/3.  

 

Contrary to all this, David Lewis argued for the “halfer” position (Lewis, 2001), 

that Sleeping Beauty’s credence that the coin landed heads is ½. The reason is simply 

that, given before the experiment was conducted the probability of heads was ½, and 

since, as the problem is set up, she has no information about what happened while 

she was asleep, then she would still have a credence that the probability of heads is ½. 

As Bischoff summarizes it:  

 
After all, one could even flip the coin before sending Sleeping Beauty to sleep. By the 

experiment’s design, she does not have any extra clues to the situation, so logically she 

should state the probability as ½. (Bischoff, 2023)  

 

Before discussing the state of play with these purported solutions to the 

Sleeping Beauty problem, it is instructive to compare and contrast this problem with 

another probability teaser, the Monty Hall problem, where there is a similar structure 

and set of intuitions about probability which lead many people, including some 

mathematicians, astray. In this case, there is a game show (similar to Let’s Make a Deal, 

originally hosted by Monty Hall), where there are three doors. Behind one door is a 

worthwhile prize, while the other two doors have no prize (or, some prefer a goat, but 

we know people who think goats are worthwhile prizes). The host knows what is 

behind the doors, and when you choose a door, he/she will open one door which 

he/she knows has no prize behind it; a different door from the one which is chosen is 

always opened.  You are then invited to either stay with your original choice or switch. 

Is it advantageous to switch (Selvin, 1975)? 

 

While many people including some mathematicians have initially said that 

there is now an equal-probability, ½ chance with the two doors, because one door has 

a worthwhile prize while the other has no prize, the received answer is to switch, 

which has a 2/3 probability of winning the prize, while staying with the original choice 

has only a 1/3 chance of winning. The 50-50 chance position would be true if the show 

host opened the door at random, which seems to be implicitly assumed, but falsely, 

by many people (Rosenthal, 2009: p. 36). However, this is not so, since the host will 
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open a door that is dependent upon the choice originally made. Hence, the assumption 

of independence, while intuitively seductive, is false (Falk, 1992; Herbranson & 

Schroeder, 2010; Granberg, 2014). Initially you have a 1/3 chance of choosing the door 

with the prize. But when the host opens the door with no prize there is a 2/3 chance 

that the prize is behind the door that is other than the original choice, because the 1/3 

probability “shifts” to that door; because there is a 2/3 chance that the prize was behind 

the two doors, and when one is eliminated, the probability still remains as 2/3. 

 

Thus, a problem such as the Monty Hall probability teaser, is one in which 

intuition about a probability fails, but when the problem is given a mathematical 

analysis, the problem resolves itself easily enough (Rosenthal, 2009). Yet this is simply 

not so with the Sleeping Beauty problem. There does not seem to be any implicit 

intuition leading to mistaken probability, but rather, there are two seemingly 

compelling arguments for two different probabilities (Titelbaum, 2013). 

 

3. Both Positions are Objectionable 
 

The arguments for both the halfer and thirder positions have been subjected to a 

sustained critique in the literature. The situation is interesting, since supporters of 

each position advance arguments against the other side, which seem to hold even if 

the independent arguments refuted their position. This is like two Wild West 

gunfighters, in a fast draw showdown, each drawing and shooting the other. 

 

Only a small sample of the literature can be mentioned here, but the reader can 

set out on an internet journey via Google Scholar to verify this claim for her/himself. 

Thus, for Ross, there is a major problem for thirders with a situation of inconsistency 

with the principle of countable additivity (Ross, 2010). And White argues that there is 

a problem for thirders based on a generalized Sleeping Beauty problem that halfers 

do not face (White, 2006). 

 

Some think that the Sleeping Beauty problem might be tackled using the many 

worlds interpretation of quantum mechanics. Peter J. Lewis argues for a halfer 

position (Lewis, 2007), while Groisman, Hallakoun and Vaidman go for a thirder 

position (Groisman, Hallakoun & Vaidman, 2013). Who is right, and in what world? 

Well, it is “many worlds,” after all. 

 

Others, such as Garisto, see neither position as inherently right or wrong: 

 
[I]t is a matter of how we define “self”—we do not give an answer about which camp 

is “right” because they are each right given a reasonable set of assumptions. (Garisto, 

2020)  
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Without spelling out Garisto’s theory in detail, the upshot is that Sleeping Beauty 

assigns to heads 1/3 if “Beauty sees herself as being in all three observer moments and 

“1/2” if she sees herself as living in an H world or a T world.” Still, we do not know 

what “world” Sleeping Beauty sees herself in, and perhaps at the end of the day, she 

does not know herself. 

 

Bostrom argues that both the ½ and 1/3 views are wrong, because both 

positions have question begging assumptions (Bostrom, 2007). He considers the 

“extreme Sleeping Beauty” which we think is certain not to get ethics approval. 

Nevertheless, in this thought experiment, it is like the original problem only if the coin 

falls tails, Sleeping Beauty is awakened on one million subsequent days, and given the 

amnesia drug and put back to sleep. When awakened on Monday, what is her 

credence in heads? There, Pr (Heads) = 1/1,000,002, with the degree of support being 

proportional to the number of awakenings, which is counter-intuitive (Bostrom, 2007: 

p. 63). Bostrom writes:  

 
It implies that Beauty should not take the fact that she is currently awake as evidence 

that there are large numbers of awakenings. But it also implies that when Beauty 

discovers that it is currently Monday, she should not take this as evidence against the 

hypothesis that there will be many more awakenings in the future. (Bostrom, 2007: p. 

74)  

 

Bostrom also outlines another thought experiment, the Presumptuous Philosopher, 

which he believes shows that the 1/3 position is incorrect; we will not sketch it here. 

But according to a hybrid model, which Bostrom believes solves the problem, in an N-

fold Sleeping Beauty problem, for N  1:  

 

(SB6)    Pr (HEADS)  1/3 & ½  Pr (HEADS) (Bostrom, 2007, 75). 

 

So, what then is the probability of HEADS in the one fold version, which we are 

interested in? Bostrom says:  

 
[I]n the one fold version, it is not the case that one-third of all actual agent-parts of 

Beauty are in a heads-trial. There, either all are, or none. Moreover, in the one fold 

version, the total number of awakenings is strongly correlated with which hypothesis, 

HEADS or TAILS, is true. (Bostrom, 2007: p. 75)  

 

Apparently then, there does not seem to be one probability for the one fold problem; 

we searched the pages and did not find it, and in accordance with (SB6) it could be 

any number n  R greater than or equal to 1/3, but less than or equal to ½. We do not 

see how that solves the original Sleeping Beauty problem, where what is sought is a 

single probability from Sleeping Beauty.   
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This problem of the solutions also rules out a paraconsistent response, where it 

could be argued that if there were utterly compelling arguments for both the 1/3, and 

½ positions, then both are correct. In the context of the logic-semantical paradoxes, 

Graham Priest has said: 

 
Here we have a set of arguments that appear to be sound, and yet end in contradiction. 

Prima facie, then, they establish that some contradictions are true. Some of the 

arguments are two and a half thousand years old. Yet despite intense attempts to say 

what is wrong with them in a number of logical epochs, including our own, there are 

no adequate solutions. […] trying to solve them is simply barking up the wrong tree: 

we should just accept them [the logico-semantical paradoxes] at face value, as showing 

that certain contradictions are true. (Priest, 2006: p. 83) 

 

However, even the paraconsistency response fails, since in the case of the Sleeping 

Beauty problem, it is not the case that there are compelling arguments for both the 1/3 

and ½ positions, but instead the case that both these positions fail because of sustained 

critical arguments in the literature. 

 

4. Conclusion 
 

The inevitable conclusion is that there is no existing satisfactory solution to the 

Sleeping Beauty problem. Moreover, given the level of intense scrutiny devoted to the 

problem, and the critical arguments against all proposed solutions, one is also justified 

in concluding that no solution will likely to be forthcoming. Therefore, this is an 

example—and we will argue elsewhere that there are many—of Analytic philosophy 

generating unsolvable problems for itself. If Sleeping Beauty, via the amnesia drug, 

does not retain any memories of awakenings, it might seem to people who are not 

Analytic philosophers, that she will not have any idea whatsoever about the 

probabilities in the problem, and thus will have no answer at all to the Analytic 

philosopher’s question. That dismal result would not be published in a highly-ranked 

Analytic philosophy journal, but with the world the closest it has been to nuclear war 

since the Cuban missile crisis (Anonymous, 2023), the fact that Sleeping Beauty does 

not know what day it is, should not be a major concern for humankind at large. 

Nevertheless, the fact that Analytic philosophers have wasted so much time and 

energy on such absurd Scholastic insolubilia—indeed, may we be permitted to say, on 

such pseudo-philosophical bullshit (Frankfurt, 1988)?—merely for the self-interested 

purposes of fattening the lists of their publications and forwarding their professional 

academic careers, should be a major concern for anyone concerned about real 

philosophy. 
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