
1

Artificial, But Not Intelligent: A Critical Analysis of AI

and AGI

Andreas Keller

A still frame from “I, Robot” (2004, dir. Alex Proyas)

Recently, a lot of attention and hype has been given to discussions about the alleged

dangers of artificial general intelligence. These fears have been fueled further by the

release of the ChatGPT in November 2022. The fear is that an artificial general

intelligence system could take over, resulting in the lock-in of bad values and leading

to dystopian results. How realistic are these fears? In the following, I will discuss what

artificial intelligence is and what artificial general intelligence would be. A clear

concept of this is missing from the recent discussion, leading to confusions. Insights

from computability theory (that are actually decades old) can shine some light on these

questions.[i]

Before discussing the topic of “AI” (artificial intelligence) and “AGI” (artificial general

intelligence), let me first introduce a few concepts. These concepts are not my

invention, they are standard mathematical concepts. I am introducing these concepts

here in an informal way to keep the discussion simple. Based on these concepts, I am

sketching, very loosely and informally, a mathematical proof. A more rigorous

formulation can be found in (Rogers, 1987), but see also (Ammon, 2013) and (Ammon,

2016).[ii]

A total function is a function from the set of natural numbers into a non-empty subset

of the set of natural numbers. It assigns a natural number as its function value (or

2

“output”) to every natural number (or “input”). The term “total” here means that there

is a value for every natural number, i.e., there is no input value where the function is

not defined. A total function is computable if there is a program (i.e., a Turing machine

or algorithm) that computes it.

It is possible to represent any chunk of digital data as a sequences (strings) of signs

(characters). It is further possible to define computable functions (with computable

inverse functions) that assign a unique natural number to each sequence of signs. Such

functions are called Gödel numberings and the number assigned to a specific sequence

of signs this way is called its Gödel number.

Any program that halts for all its inputs and that maps some data to other data can be

replaced by a program that maps the Gödel numbers of the Inputs to the Gödel

numbers of the outputs. It is thus possible to replace computations on arbitrary kinds

of data with equivalent computations on natural numbers. In this way, arbitrary

halting programs can be replaced by equivalent programs for computable total

functions on natural numbers.

A set of programs[iii] P is Turing-enumerable if a program p can be written that takes

natural numbers as its input and produces all the programs in the given set as its

outputs. This means that for each program p in the given set of algorithms P, a natural

number n must exist so that applying the enumeration program to this number yields

the given program as its output, i.e., p = P(n). In the following, I will use the notation

Pn for P(n), i.e., Pn denotes the Program that is calculated as the output of P for the

input n.

Now it can be shown with a simple proof that the set of all computable total functions

is not Turing-enumerable: Assume that a program P exists that enumerates the set of

all computable total functions. Now we construct a function f as f(n) = Pn(n) + 1. So, to

calculate this function for an input n, we use P (a Turing-computable algorithm) to

calculate the program Pn, then apply Pn to n and then add 1 to the result.[iv] Clearly, f

is a computable total function. According to our assumption, P is complete with

respect to the set of all computable total functions. So, there must be a natural number

m so that Pm = f. Since Pm = f, applying f to m yields f(m) = Pm (m). But according to the

definition of f, we know already that f(m) = Pm(m) + 1. So, we get Pm(m) = Pm(m) + 1.

Subtracting Pm(m) on both sides of this equation yields 0 = 1, which is wrong. So, the

assumption that an enumeration P exists that produces all computable total functions

leads to a wrong statement and is therefore wrong. This means that the set of all

computable total functions is not Turing-enumerable.[v]

Moreover, the proof informally sketched here shows that for an enumeration of

computable total functions F, it is always possible to effectively construct a new function

f not generated by F. This construction (taking the diagonal and modifying it, for

example by adding 1) is an example of what is known in mathematics as a productive

3

function.[vi] If we have a set X that is not Turing-enumerable and we have a subset Y

of X that is Turing-enumerable, a productive function can generate from Y a new

element x of X that is not contained in Y. Such a set X is called a productive set.

Obviously, if we start with any enumeration algorithm P, it is not possible to get a

complete enumeration by building a new enumeration algorithm P’ that somehow

contains the productive function and can apply it and become complete that way. We

can, of course, build the productive function into P and get some P’ that way and P’

might produce a larger set than P, but it will be incomplete again because the

productive function can be applied to it as well from the outside. The proof means that

it is impossible to construct a complete algorithm to enumerate all computable total

functions.[vii]

Now let’s apply this insight to AI.[viii] AI-systems are algorithms (in AI jargon, they

are often called “models”, but these are just – rather convoluted – algorithms). These

algorithms are generated by learning algorithms that are applied to sets of training

data (e.g., example data like input-output pairs). The learning algorithm constructs

algorithms compatible with the sample data in its input. The learning algorithm might

contain steps that involve random data. We can consider this random data to be part

of the input data.

We can construct a Gödel numbering that maps the input data and the output data of

the generated algorithms on natural numbers (if the resulting algorithms, or “models”,

make use of random data, this random data can also be viewed as being part of the

input and would be included in the generation of the Gödel numbers). Likewise, we

can map the training data (the sets of input-output pairs) onto Gödel numbers, so that

the complete training data used for a training session of a learning algorithm is

mapped onto a number.[ix] In this way, we can replace the algorithms produced by

the learning algorithm by computable total functions of natural numbers. The learning

algorithm is thus viewed as an algorithm that maps natural numbers onto algorithms

for computable total functions. In other words, the learning algorithm is an

enumeration algorithm producing a Turing-enumerable subset of the set of

computable total functions!

The proof that every computable enumeration of algorithms for computable total

functions is incomplete then means that for each learning algorithm, there are learning

tasks that it cannot master. Each such algorithm is special! It has systematic blind spots.

We can view the learning process as a process of discovering regularity.[x] The proof

then means that for each learning algorithm, there are instances of regularities in data

that it cannot discover, while a different learning algorithm might be able to discover

that instance of regularity (but will in turn have its own blind spots), and so on. So, all

AI learning algorithms are special. They cannot be general.

4

More specifically, not only can a computable total function be constructed whose

regularity a particular learning algorithm cannot learn, but an algorithm for the

computation of that function can be constructed from the learning algorithm itself![xi]

Another learning algorithm can be constructed that covers the new function, but that

extended learning algorithm will have a blind spot of its own, and so on.

So, all learning algorithms are incomplete. As a consequence, the concept of learning in

its general form cannot be formalized. Every formal theory formalizing the concept of

learning (equivalent to an algorithm for the enumeration of a set of (learnt) algorithms)

is incomplete in principle. We can define general intelligence as the ability to discover

arbitrary (computable[xii]) regularities in arbitrary data. At least, that ability should

be part of something worthy of being called “general intelligence”. The proof then

means that general intelligence (general cognition) is impossible if we are restricted to

algorithms. Instead, general intelligence is required to go beyond Turing machines.

Another result from theoretical computer science leads to the same insight. This is the

result that the Kolmogorov complexity is not Turing computable.[xiii] For a given

programming language (e.g., Turing machines), the Kolmogorov complexity of a

given piece of data is the size (length) of the smallest program whose output is that

data. We can think of lossless data compression as the construction of a program

smaller than the original data whose execution yields that data as an output. If the data

contains any regularity (for example, repetitions), it is possible to compress or “fold”

it “along” that regularity, i.e., write a program that produces the regular structure as

its output (for example with a program loop in case of the repetition-example). It can

be shown that the Kolmogorov complexity is not, in the general case, Turing-

computable. As a result, if we write a compression algorithm that compresses data into

shorter algorithms producing that data as output, it is always possible that a given

compression algorithm does not yield the optimal compression in some cases. If we

had a compression algorithm that was optimal in all cases, we could simply compute

the Kolmogorov complexity by applying that algorithm and then checking the length

of the resulting programs. Since this is not possible, optimal compression by

algorithms is impossible. Each compression algorithm has systematic blind spots, i.e.,

there will be cases of regularities in data that it will be unable to spot and exploit.

Learning can be viewed as data compression: a computable total function f generates

a sequence of outputs f(1), f(2)…. For an algorithm computing f, there is some number

n where the sequence f(1) … f(n) is longer than that algorithm computing f. From then

on at the latest, the sequence must contain some regularity since the algorithm

computing f can be viewed as a compression of the sequence. Constructing the

algorithm from examples can this way be viewed as a process of data compression.

The result about the Kolmogorov complexity is another way to see that it is impossible

to construct all such algorithms (excluding algorithms that don’t halt for all of their

inputs) with a single learning/compression algorithm.

5

The impressive achievements of learning algorithms are based on regularities in the

data. We can expect learning algorithms to construct very efficient and powerful

algorithms for large sets of problems which contain some regularity and can either be

covered by an efficient algorithm or for which at least practically useful

approximations are possible. However, we cannot expect this type of “AI” to develop

into general intelligence because each instance is necessarily special and has blind

spots.

Humans are able to find solutions for tasks for which it can be shown that they are not

Turing computable. For example, human beings can do mathematics and do computer

programming, tasks that involve activities for which no general algorithm exists. This

indicates that the capabilities of human beings go beyond those of algorithms. In

physics, entities are known for which some questions are not computable.[xiv] Such

systems behave according to some laws, typically sets of equations, for which no

algorithm for their solution in all cases exists. So, physical systems are not bound to

the restrictions of computability. For such physical entities, special cases or

approximations might be computable, but in the general case, all our methods of

computation for such systems will always be incomplete (although they might be

extensible). Human beings seem to be such entities for which complete computability

is not possible. Any single algorithmic or formal theory (exact description) of such

entities is incomplete. It might be possible to extend such a description, but the

resulting extended description will be incomplete again, i.e., the entity can develop in

ways that lead it out of the scope of the given description. I call such entities “proteons”

or “protean.”[xv] The ability of human beings to do mathematics means that they are

protean. That every AI is incomplete in principle means that an Artificial General

Intelligence would have to be a proteon. It would have to be a physical entity that

cannot, in principle, be completely described in terms of a single formal theory or

algorithm. It would be able to change its mode of operation with respect to any single

formal theory or any description of it in terms of algorithms. It would be impossible to

understand it completely in terms of any single (exact, i.e., formal or algorithmic)

theory about it, although every particular process in it could be described exactly in

hindsight. There would be no single formal theory abstracting about all such particular

processes.

It should be technically possible to build such entities artificially. This could even turn

out to be quite simple. It might involve implementing productive functions triggered

in a physical system where the process triggering them is not under the control of the

algorithmic/formal system to which they are applied and runs asynchronous to it in

physical time. This process could be compared to processes causing mutations in

organisms. Such processes can be viewed as creative learning processes, in contrast to

the merely generative processes of algorithmic learning. However, I am not going to

discuss any further here how this could be implemented.

6

Artificial general intelligence will not be achieved by simply following the current

course of development of AI which is limited to algorithms and where progress is

attempted only by increasing the computing power or by finding better algorithms.

This line of research is going to lead to important, useful, and impressive results but

not to general intelligence. Conventional AI learning algorithms and AI systems only

operate along the “generative dimension”. They lack evolution along the creative

dimension.

General intelligence, on the other hand, if achieved in artificial entities, is not going to

lead to superintelligence (as expected by some authors), for the following reasons:

First, the possibility of errors cannot be avoided in general intelligence, in principle.

Going beyond the capabilities of a given formal theory (or algorithm) means to go

beyond what is provable within the respective formal system. If a general framework

existed in which the correctness of an extension could be proved, this could be used to

build a system in which every theorem is decidable. It has been shown that this is not

possible (e.g., by Gödel). So, the old saying “errare humanum est” must be extended to

Artificial General Intelligence as well. Restricting a system to guarantied truth restricts

its capabilities and turns it into a special algorithm (i.e., into a conventional algorithmic

AI or something even more special).[xvi]

Second, the performance of an AGI would be limited. The impressive performance of

computers is due to the use of algorithms that exploit regularities in data. These

algorithms are always special. They can use known regularities in the given data to

reduce the search space, resulting in efficient computation. In the creative processes of

going beyond a given formal or algorithmic system, such exploitation of regularity is

impossible. There is no oracle that tells the system in advance which operations are

going to be successful. As a result, the cognitive system, or rather the creative cognitive

proteon, has to face a search space unconstrained by known structures and

regularities. It faces the danger of combinatorial explosions that cannot be avoided by

exploiting structures known in advance. Combinatorial explosions can quickly

overwhelm any available set of computing resources, no matter how large they are. To

avoid them, it is necessary to experiment with small sets of information only at any

time. As a result, such creative processes are slow in principle! The narrowness of

consciousness, which has been known in psychology for a long time,[xvii] i.e., the

restriction to a small number of chunks of information which are considered together

at a time, is therefore not just a characteristic of the human mind or brain but a general

characteristic of any (also artificial) creative (non-algorithmic) cognition. General

intelligence is slow in principle.

It might be possible to run several or many artificial general intelligences in parallel.

But these would have to communicate in some language they create and negotiate

among each other that would have to be like natural language, with all its possible

shortcomings, like vagueness and the possibility of misunderstandings. If each

7

instance can move out of the scope of any predefined theory about it, the construction

of an exact language preventing vagueness or misunderstandings would be

impossible or restrict the possibilities of communication between the instances too

much, up to the point of forcing them into algorithmic behavior, i.e., outside the realm

of generality.

There is no reason why an AGI should outperform a team of human programmers

equipped with computers (containing arbitrary software, including conventional AI

and learning algorithms) of the same computing power as the one available to the AGI.

In fact, if an AGI is a physical entity that consists of conventional AI plus a set of

productive functions that can be triggered from a physically asynchronous sub-entity,

a conventional AI controlled and modified by a group of human programmers can be

regarded as a generally intelligent entity because the computer’s programming

interface through which the programmers can analyze and modify the AI can be

regarded as a productive function or set of productive functions through which the AI

can be modified and the team of programmers can be regarded as the physically

asynchronous entity triggering this productive function.

The world itself is a proteon, i.e., it cannot be described completely and exactly in terms

of a single formal theory or algorithm (as the occurrence of non-computable physical

entities mentioned above shows). General intelligence, both human or artificial, must

itself be protean and thus have plasticity and creativity by means of which it is able to

cope with and adapt to the world’s protean complexity. But it is, in principle and

unavoidably, slow, and prone to the possibility of error. Intelligence can therefore not

be increased indefinitely. The impressive performance of AIs is due to algorithms, so

it is always special and unfolds only along the generative dimension. Intelligence can

be made faster by discovering and exploiting patterns in the data or the world, but

such improvements are always special.

A superintelligence (Bostrom, 2014) is, therefore, in all probability impossible. The idea

of superintelligence presupposes that intelligence can be increased tremendously and

boundlessly. But this is wrong. The impressive performance of AIs on special tasks is

due to the algorithmic nature of these systems and the special regularity of the

particular tasks at hand.

An AGI might be possible, but it would be uncontrollable – it might develop away

from the tasks its users intended it to do – and the accurateness of its results must be

checked empirically, just like those of human intelligence. Its usefulness is, therefore,

questionable. An AGI would be protean, i.e., creative in the sense that it can develop

and change out of the scope of any single theory about it. It would in that sense be

unpredictable and therefore also uncontrollable in principle.

An AGI would also be uncontrollable to itself. In some circles, especially those of the

“Longtermists”[xviii] there is the fear that an AGI could gain control and lead to the

8

lock-in of bad values, resulting in a dystopian future. However, an AGI could not lock

in forever to a fixed set of values since it would undergo mutations by a process

outside its control and thus could undergo changes unpredictable and uncontrollable

to itself. This ability of change is exactly what is required for it to be an AGI instead of

just a conventional AI. Taking that possibility away would turn it into an algorithm,

i.e., a conventional AI.[xix]

Computers are “better” than humans at executing algorithms (just as planes are better

than people at flying, cars are better than people at moving quickly and flint stone

blades are better than people’s teeth or fingernails at cutting flesh). We can therefore

expect to see the development of powerful conventional AI systems incorporating

formalizable aspects of very large sets of knowledge.[xx] The resulting

“impressiveness” of conventional AI systems is due to the power of algorithms

combined with the wide scope of the knowledge or data incorporated into them and

the regularities present in this data (as far as the learning algorithms could discover

those regularities). But this knowledge is “flat”. It is purely generative and lacks the

creative dimension. Increasing the hardware power, using more sophisticated

algorithms[xxi] and hardware architectures and incorporating ever larger sets of

training data will, however, not lead to artificial general intelligence (AGI), contrary

to the expectations of many current observers, including many people working inside

the AI research field. This line of research is not going to lead to super-intelligence or

an AGI takeover.

It might be possible to integrate a creative dimension and thereby to create something

that could be called AGI, but the resulting systems would not be able to move in the

direction of the creative dimension with the same impressive speed as they are moving

in the direction of the generative dimension, since, as discussed above, creativity is

inherently slow and error prone. Furthermore, since such systems would be inherently

uncontrollable, the practical usefulness of such a technology, if ever implemented,

appears doubtful.

Like other technologies, conventional AI might lead to useful applications, but also to

disruptive effects on society and to novel ethical and legal problems. It is mainly this

domain of practical problems resulting from AI applications that philosophers should

focus on in the context of AI.

9

NOTES

[i] The arguments presented here can also be found in my speculative essay (Keller,

2019: section 4).

[ii] According to (Ammon, 2013), the insights I am referring to here are implicitly

contained already in a 1944 publication of mathematician Emil L. Post, who, for his

own formulation of Gödel’s incompleteness theorem introduced the notion of

“creative sets”. The notion of “productive sets” was introduced by J. Dekker in 1955

(Dekker, 1955), so these insights are as old as, or older than, the introduction of the

first AI research program in 1955/1956. However, they have been largely ignored, if

not even suppressed, by the AI research community ever since.

[iii] In this article, I use the terms “algorithm” and “program” interchangeably. You

could also say “app”. In AI-circles, the term “model” is often used instead for

programs generated by learning algorithms.

[iv] If you write the outputs of the functions Pn into a table so that the first column

contains all the outputs from the first function P1, the second column contains the

output of the second function and so on, then the term Pn(n) denotes the diagonal of

that table. For this reason, this proof method is known as diagonalization or the

diagonal method.

[v] It should be emphasized how elementary this diagonalization argument is: in

(Rogers, 1987), one of the standard textbooks on computability theory, it is introduced

on page 10, as part of chapter 1, which presents some introductory concepts and

prerequisites. As the author also mentions on page 11: “The reader will note an

analogy to Cantor’s diagonal proof of the nondenumerability of the real numbers[…]”.

This refers to work by G. Cantor published back in 1891.

[vi] See (Dekker, 1955).

[vii] Since programs for arbitrary data that halt for all their inputs can be mapped to

total functions via Gödel numberings, this also means that general automatic

programming is not possible. Programming is not completely formalizable. Programs

producing other programs are either incomplete (i.e., for each such automatic

programmer, there are programs it cannot produce, or they can also produce programs

that do not halt for all of their inputs, i.e., that are faulty. If artificial general intelligence

includes the ability of general programming, this shows already that AGI is impossible

with algorithms alone.

[viii] The idea of applying these ideas to AI was introduced first by Kurt Ammon to

whom I am indebted for many of the ideas presented here.

10

[ix] A Gödel numbering for the training data can be constructed from the learning

algorithm itself. The learning algorithm has to be a halting algorithm (if it will not halt

for some inputs, it is useless). For any input, it will have to produce either an error

message or an algorithm as a result after a finite time. The training data can be

represented as strings. All strings can be enumerated (essentially ordered by length

and by the alphabet used) and the learning algorithm can then be used to decide if

they are well-formed training data. They can then be numbered in the resulting

sequence.

[x] Each algorithm calculating a total function enumerates an (infinite) sequence of

numbers. The algorithm can then be viewed as a compressed form of that sequence

representing its regularity (pattern) in a finite text.

[xi] As Ammon has noted, applying the productive function to the algorithm requires

a reference to the algorithm as a whole. That the algorithm cannot apply the productive

function to itself and thus break out of its limitations can be viewed as its inability of

any algorithms to generate a reference to itself as a whole. As a result, what an

algorithm can compute (and what can be derived in a formal theory – a notion

equivalent to that of an algorithm) is fixed once and for all: an algorithm cannot

develop.

[xii] “Computable” here means the regularity (of a sequence of data or the

corresponding Gödel numbers) can be represented by an algorithm, i.e., as a finite text

or as a finite chunk of knowledge.

[xiii] This result is one of the theorems jokingly known as “full employment

theorems,” since they show that there are certain tasks that human programmers,

mathematicians, and scientists can do that can be shown to be impossible to any

algorithm in the general case. Since my goal here is understandability, I decided just

to point to Wikipedia on the subject of Kolmogorov complexity, instead of specialist

literature. References can be found here:

<https://en.wikipedia.org/w/index.php?title=Kolmogorov_complexity&oldid=112832

2834>.

[xiv] See (Cubitt et al., 2015, 2018).

[xv] Named after the god Proteus from Greek mythology, See (Keller, 2019: pp. 120 –

122). Ammon introduced the similar notion of “Creative Systems,” which says that all

formal theories of human cognitive processes are incomplete, in principle, see

(Ammon, 1987).

[xvi] We should, however, also note that errors cannot be prevented in conventional

AI systems. Everybody using such systems will have come across instances where the

systems produced wrong results. Automatic systems are riddled with all the problems

https://en.wikipedia.org/w/index.php?title=Kolmogorov_complexity&oldid=1128322834.
https://en.wikipedia.org/w/index.php?title=Kolmogorov_complexity&oldid=1128322834.

11

of epistemology and there is no general way to guarantee the correctness of programs,

no matter if these are hand-programmed or produced by other programs.

[xvii] See (Mager, 1920).

[xviii] See, for example, (MacAskill, 2022).

[xix] What really can lead to the lock-in of bad values is not AGI, but accumulation of

power. Power is self-amplifying by political, military/coercive, and economic means.

The problem of preventing the lock-in of bad values is, therefore, not a problem

connected to AGI, but instead the problem of power and of uncontrolled and

unlimited economic growth (which, strangely, is advocated by the Longtermists)

which can lead to the accumulation of power in the hands of small groups and is

therefore, besides the other destructive effects it has, inherently dangerous. However,

these topics go beyond the scope of the current article.

[xx] It is a matter of stipulative definition if we want to call such systems “intelligent.”

Human intelligence has its own generative components, but I follow Ammon in

viewing creativity as the core of real intelligence. However, creativity as defined by

Ammon is unformalizable by definition, i.e., it cannot be implemented in terms of

algorithms alone. In this sense, I don’t view conventional AI systems as truly

intelligent even if they do things that require intelligence if done by humans.

[xxi] Note that the arguments sketched above (diagonalization and Kolmogorov

complexity) do not contain any assumptions on the kind of algorithms used, so they

are valid no matter what kind of learning algorithms are going to be invented.

12

REFERENCES

(Ammon, 1987). Ammon, K. “The Automatic Development of Concepts and

Methods.” Doctoral Dissertation, University of Hamburg, Dept. of Computer Science.

(Ammon, 2013). Ammon, K. “An Effective Procedure for Computing ‘Uncomputable’

Functions.” Available online at URL = <https://arxiv.org/abs/1302.1155>;

downloadable .pdf available online at URL = <https://arxiv.org/pdf/1302.1155.pdf>.

(Ammon, 2016). Ammon, K. “Informal Physical Reasoning Processes.” Available

online at URL = <http://arxiv.org/abs/1608.04672v1>; downloadable .pdf available

online at URL = <https://arxiv.org/pdf/1608.04672v1.pdf>.

(Bostrom, 2014). Bostrom, N. Superintelligence. Oxford: Oxford Univ. Press.

(Cubitt et al., 2015). Cubitt, T., Perez-Garcia, D., and Wolf, M. “Undecidability of the

Spectral Gap.“ Nature 528: 207-211, preprint available online at

<https://arxiv.org/abs/1502.04573v3>; downloadable .pdf available online at URL =

<https://arxiv.org/pdf/1502.04573v3.pdf>.

(Cubitt et al., 2018) Cubitt, T., Perez-Garcia, D., and Wolf, M. “The Unsolvable

Problem.” Scientific American 319 (October): 20-29. Available online at URL =

<https://www.scientificamerican.com/article/the-unsolvable-problem/>.

(Dekker, 1955) Dekker, J. C. E.: “Productive Sets”, Transactons of the American

Mathematical Society, vol. 78, 129 – 149.

(Keller, 2019). Keller, A. “Proteons : Towards a Philosophy of Creativity.” Borderless

Philosophy 2: 117–172. Available online at URL = <https://www.cckp.space/single-

post/2019/06/01/BP2-2019-Proteons-Towards-a-Philosophy-of-Creativity-pp-117-

172>.

(MacAskill, 2022) MacAskill, William: “What We Owe the Future : A Million-Year

View”, Oneworld Publications, London, 2022.

(Mager, 1920). Mager, A. Die Enge des Bewußtseins. Stuttgart: W. Spemanns Verlag.

(Rogers, 1987). Rogers, H. Theory of Recursive Functions and Effective Computability. The

Cambridge MA: MIT Press.

https://arxiv.org/abs/1302.1155
https://arxiv.org/pdf/1302.1155.pdf
http://arxiv.org/abs/1608.04672v1
https://arxiv.org/pdf/1608.04672v1.pdf
https://arxiv.org/abs/1502.04573v3
https://arxiv.org/pdf/1502.04573v3.pdf
https://www.scientificamerican.com/article/the-unsolvable-problem/
https://www.cckp.space/single-post/2019/06/01/BP2-2019-Proteons-Towards-a-Philosophy-of-Creativity-pp-117-172
https://www.cckp.space/single-post/2019/06/01/BP2-2019-Proteons-Towards-a-Philosophy-of-Creativity-pp-117-172
https://www.cckp.space/single-post/2019/06/01/BP2-2019-Proteons-Towards-a-Philosophy-of-Creativity-pp-117-172

