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Recently, a lot of attention and hype has been given to discussions about the alleged 

dangers of artificial general intelligence. These fears have been fueled further by the 

release of the ChatGPT in November 2022. The fear is that an artificial general 

intelligence system could take over, resulting in the lock-in of bad values and leading 

to dystopian results. How realistic are these fears? In the following, I will discuss what 

artificial intelligence is and what artificial general intelligence would be. A clear 

concept of this is missing from the recent discussion, leading to confusions. Insights 

from computability theory (that are actually decades old) can shine some light on these 

questions.[i] 

Before discussing the topic of “AI” (artificial intelligence) and “AGI” (artificial general 

intelligence), let me first introduce a few concepts. These concepts are not my 

invention, they are standard mathematical concepts. I am introducing these concepts 

here in an informal way to keep the discussion simple. Based on these concepts, I am 

sketching, very loosely and informally, a mathematical proof. A more rigorous 

formulation can be found in (Rogers, 1987), but see also (Ammon, 2013) and (Ammon, 

2016).[ii] 

A total function is a function from the set of natural numbers into a non-empty subset 

of the set of natural numbers. It assigns a natural number as its function value (or 
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“output”) to every natural number (or “input”). The term “total” here means that there 

is a value for every natural number, i.e., there is no input value where the function is 

not defined. A total function is computable if there is a program (i.e., a Turing machine 

or algorithm) that computes it. 

It is possible to represent any chunk of digital data as a sequences (strings) of signs 

(characters). It is further possible to define computable functions (with computable 

inverse functions) that assign a unique natural number to each sequence of signs. Such 

functions are called Gödel numberings and the number assigned to a specific sequence 

of signs this way is called its Gödel number. 

Any program that halts for all its inputs and that maps some data to other data can be 

replaced by a program that maps the Gödel numbers of the Inputs to the Gödel 

numbers of the outputs. It is thus possible to replace computations on arbitrary kinds 

of data with equivalent computations on natural numbers. In this way, arbitrary 

halting programs can be replaced by equivalent programs for computable total 

functions on natural numbers. 

A set of programs[iii] P is Turing-enumerable if a program p can be written that takes 

natural numbers as its input and produces all the programs in the given set as its 

outputs. This means that for each program p in the given set of algorithms P, a natural 

number n must exist so that applying the enumeration program to this number yields 

the given program as its output, i.e., p = P(n). In the following, I will use the notation 

Pn for P(n), i.e., Pn denotes the Program that is calculated as the output of P for the 

input n. 

Now it can be shown with a simple proof that the set of all computable total functions 

is not Turing-enumerable: Assume that a program P exists that enumerates the set of 

all computable total functions. Now we construct a function f as f(n) = Pn(n) + 1. So, to 

calculate this function for an input n, we use P (a Turing-computable algorithm) to 

calculate the program Pn, then apply Pn to n and then add 1 to the result.[iv] Clearly, f 

is a computable total function. According to our assumption, P is complete with 

respect to the set of all computable total functions. So, there must be a natural number 

m so that Pm = f. Since Pm = f, applying f to m yields f(m) = Pm (m). But according to the 

definition of f, we know already that f(m) = Pm(m) + 1. So, we get  Pm(m) = Pm(m) + 1. 

Subtracting Pm(m) on both sides of this equation yields 0 = 1, which is wrong. So, the 

assumption that an enumeration P exists that produces all computable total functions 

leads to a wrong statement and is therefore wrong. This means that the set of all 

computable total functions is not Turing-enumerable.[v] 

Moreover, the proof informally sketched here shows that for an enumeration of 

computable total functions F, it is always possible to effectively construct a new function 

f not generated by F. This construction (taking the diagonal and modifying it, for 

example by adding 1) is an example of what is known in mathematics as a productive 
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function.[vi] If we have a set X that is not Turing-enumerable and we have a subset Y 

of X that is Turing-enumerable, a productive function can generate from Y a new 

element x of X that is not contained in Y. Such a set X is called a productive set. 

Obviously, if we start with any enumeration algorithm P, it is not possible to get a 

complete enumeration by building a new enumeration algorithm P’ that somehow 

contains the productive function and can apply it and become complete that way. We 

can, of course, build the productive function into P and get some P’ that way and P’ 

might produce a larger set than P, but it will be incomplete again because the 

productive function can be applied to it as well from the outside. The proof means that 

it is impossible to construct a complete algorithm to enumerate all computable total 

functions.[vii] 

Now let’s apply this insight to AI.[viii] AI-systems are algorithms (in AI jargon, they 

are often called “models”, but these are just – rather convoluted – algorithms). These 

algorithms are generated by learning algorithms that are applied to sets of training 

data (e.g., example data like input-output pairs). The learning algorithm constructs 

algorithms compatible with the sample data in its input. The learning algorithm might 

contain steps that involve random data. We can consider this random data to be part 

of the input data. 

We can construct a Gödel numbering that maps the input data and the output data of 

the generated algorithms on natural numbers (if the resulting algorithms, or “models”, 

make use of random data, this random data can also be viewed as being part of the 

input and would be included in the generation of the Gödel numbers). Likewise, we 

can map the training data (the sets of input-output pairs) onto Gödel numbers, so that 

the complete training data used for a training session of a learning algorithm is 

mapped onto a number.[ix] In this way, we can replace the algorithms produced by 

the learning algorithm by computable total functions of natural numbers. The learning 

algorithm is thus viewed as an algorithm that maps natural numbers onto algorithms 

for computable total functions. In other words, the learning algorithm is an 

enumeration algorithm producing a Turing-enumerable subset of the set of 

computable total functions! 

The proof that every computable enumeration of algorithms for computable total 

functions is incomplete then means that for each learning algorithm, there are learning 

tasks that it cannot master. Each such algorithm is special! It has systematic blind spots. 

We can view the learning process as a process of discovering regularity.[x] The proof 

then means that for each learning algorithm, there are instances of regularities in data 

that it cannot discover, while a different learning algorithm might be able to discover 

that instance of regularity (but will in turn have its own blind spots), and so on. So, all 

AI learning algorithms are special. They cannot be general. 
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More specifically, not only can a computable total function be constructed whose 

regularity a particular learning algorithm cannot learn, but an algorithm for the 

computation of that function can be constructed from the learning algorithm itself![xi] 

Another learning algorithm can be constructed that covers the new function, but that 

extended learning algorithm will have a blind spot of its own, and so on. 

So, all learning algorithms are incomplete. As a consequence, the concept of learning in 

its general form cannot be formalized. Every formal theory formalizing the concept of 

learning (equivalent to an algorithm for the enumeration of a set of (learnt) algorithms) 

is incomplete in principle. We can define general intelligence as the ability to discover 

arbitrary (computable[xii]) regularities in arbitrary data. At least, that ability should 

be part of something worthy of being called “general intelligence”. The proof then 

means that general intelligence (general cognition) is impossible if we are restricted to 

algorithms. Instead, general intelligence is required to go beyond Turing machines. 

Another result from theoretical computer science leads to the same insight. This is the 

result that the Kolmogorov complexity is not Turing computable.[xiii] For a given 

programming language (e.g., Turing machines), the Kolmogorov complexity of a 

given piece of data is the size (length) of the smallest program whose output is that 

data. We can think of lossless data compression as the construction of a program 

smaller than the original data whose execution yields that data as an output. If the data 

contains any regularity (for example, repetitions), it is possible to compress or “fold” 

it “along” that regularity, i.e., write a program that produces the regular structure as 

its output (for example with a program loop in case of the repetition-example). It can 

be shown that the Kolmogorov complexity is not, in the general case, Turing-

computable. As a result, if we write a compression algorithm that compresses data into 

shorter algorithms producing that data as output, it is always possible that a given 

compression algorithm does not yield the optimal compression in some cases. If we 

had a compression algorithm that was optimal in all cases, we could simply compute 

the Kolmogorov complexity by applying that algorithm and then checking the length 

of the resulting programs. Since this is not possible, optimal compression by 

algorithms is impossible. Each compression algorithm has systematic blind spots, i.e., 

there will be cases of regularities in data that it will be unable to spot and exploit. 

Learning can be viewed as data compression: a computable total function f generates 

a sequence of outputs f(1), f(2)…. For an algorithm computing f, there is some number 

n where the sequence f(1) … f(n) is longer than that algorithm computing f. From then 

on at the latest, the sequence must contain some regularity since the algorithm 

computing f can be viewed as a compression of the sequence. Constructing the 

algorithm from examples can this way be viewed as a process of data compression. 

The result about the Kolmogorov complexity is another way to see that it is impossible 

to construct all such algorithms (excluding algorithms that don’t halt for all of their 

inputs) with a single learning/compression algorithm. 



5 
 

The impressive achievements of learning algorithms are based on regularities in the 

data. We can expect learning algorithms to construct very efficient and powerful 

algorithms for large sets of problems which contain some regularity and can either be 

covered by an efficient algorithm or for which at least practically useful 

approximations are possible. However, we cannot expect this type of “AI” to develop 

into general intelligence because each instance is necessarily special and has blind 

spots. 

Humans are able to find solutions for tasks for which it can be shown that they are not 

Turing computable. For example, human beings can do mathematics and do computer 

programming, tasks that involve activities for which no general algorithm exists. This 

indicates that the capabilities of human beings go beyond those of algorithms. In 

physics, entities are known for which some questions are not computable.[xiv] Such 

systems behave according to some laws, typically sets of equations, for which no 

algorithm for their solution in all cases exists. So, physical systems are not bound to 

the restrictions of computability. For such physical entities, special cases or 

approximations might be computable, but in the general case, all our methods of 

computation for such systems will always be incomplete (although they might be 

extensible). Human beings seem to be such entities for which complete computability 

is not possible. Any single algorithmic or formal theory (exact description) of such 

entities is incomplete. It might be possible to extend such a description, but the 

resulting extended description will be incomplete again, i.e., the entity can develop in 

ways that lead it out of the scope of the given description. I call such entities “proteons” 

or “protean.”[xv] The ability of human beings to do mathematics means that they are 

protean. That every AI is incomplete in principle means that an Artificial General 

Intelligence would have to be a proteon. It would have to be a physical entity that 

cannot, in principle, be completely described in terms of a single formal theory or 

algorithm. It would be able to change its mode of operation with respect to any single 

formal theory or any description of it in terms of algorithms. It would be impossible to 

understand it completely in terms of any single (exact, i.e., formal or algorithmic) 

theory about it, although every particular process in it could be described exactly in 

hindsight. There would be no single formal theory abstracting about all such particular 

processes. 

It should be technically possible to build such entities artificially. This could even turn 

out to be quite simple. It might involve implementing productive functions triggered 

in a physical system where the process triggering them is not under the control of the 

algorithmic/formal system to which they are applied and runs asynchronous to it in 

physical time. This process could be compared to processes causing mutations in 

organisms. Such processes can be viewed as creative learning processes, in contrast to 

the merely generative processes of algorithmic learning. However, I am not going to 

discuss any further here how this could be implemented. 
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Artificial general intelligence will not be achieved by simply following the current 

course of development of AI which is limited to algorithms and where progress is 

attempted only by increasing the computing power or by finding better algorithms. 

This line of research is going to lead to important, useful, and impressive results but 

not to general intelligence. Conventional AI learning algorithms and AI systems only 

operate along the “generative dimension”. They lack evolution along the creative 

dimension. 

General intelligence, on the other hand, if achieved in artificial entities, is not going to 

lead to superintelligence (as expected by some authors), for the following reasons: 

First, the possibility of errors cannot be avoided in general intelligence, in principle. 

Going beyond the capabilities of a given formal theory (or algorithm) means to go 

beyond what is provable within the respective formal system. If a general framework 

existed in which the correctness of an extension could be proved, this could be used to 

build a system in which every theorem is decidable. It has been shown that this is not 

possible (e.g., by Gödel). So, the old saying “errare humanum est” must be extended to 

Artificial General Intelligence as well. Restricting a system to guarantied truth restricts 

its capabilities and turns it into a special algorithm (i.e., into a conventional algorithmic 

AI or something even more special).[xvi] 

Second, the performance of an AGI would be limited. The impressive performance of 

computers is due to the use of algorithms that exploit regularities in data. These 

algorithms are always special. They can use known regularities in the given data to 

reduce the search space, resulting in efficient computation. In the creative processes of 

going beyond a given formal or algorithmic system, such exploitation of regularity is 

impossible. There is no oracle that tells the system in advance which operations are 

going to be successful. As a result, the cognitive system, or rather the creative cognitive 

proteon, has to face a search space unconstrained by known structures and 

regularities. It faces the danger of combinatorial explosions that cannot be avoided by 

exploiting structures known in advance. Combinatorial explosions can quickly 

overwhelm any available set of computing resources, no matter how large they are. To 

avoid them, it is necessary to experiment with small sets of information only at any 

time. As a result, such creative processes are slow in principle! The narrowness of 

consciousness, which has been known in psychology for a long time,[xvii] i.e., the 

restriction to a small number of chunks of information which are considered together 

at a time, is therefore not just a characteristic of the human mind or brain but a general 

characteristic of any (also artificial) creative (non-algorithmic) cognition. General 

intelligence is slow in principle. 

It might be possible to run several or many artificial general intelligences in parallel. 

But these would have to communicate in some language they create and negotiate 

among each other that would have to be like natural language, with all its possible 

shortcomings, like vagueness and the possibility of misunderstandings. If each 
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instance can move out of the scope of any predefined theory about it, the construction 

of an exact language preventing vagueness or misunderstandings would be 

impossible or restrict the possibilities of communication between the instances too 

much, up to the point of forcing them into algorithmic behavior, i.e., outside the realm 

of generality. 

There is no reason why an AGI should outperform a team of human programmers 

equipped with computers (containing arbitrary software, including conventional AI 

and learning algorithms) of the same computing power as the one available to the AGI. 

In fact, if an AGI is a physical entity that consists of conventional AI plus a set of 

productive functions that can be triggered from a physically asynchronous sub-entity, 

a conventional AI controlled and modified by a group of human programmers can be 

regarded as a generally intelligent entity because the computer’s programming 

interface through which the programmers can analyze and modify the AI can be 

regarded as a productive function or set of productive functions through which the AI 

can be modified and the team of programmers can be regarded as the physically 

asynchronous entity triggering this productive function. 

The world itself is a proteon, i.e., it cannot be described completely and exactly in terms 

of a single formal theory or algorithm (as the occurrence of non-computable physical 

entities mentioned above shows). General intelligence, both human or artificial, must 

itself be protean and thus have plasticity and creativity by means of which it is able to 

cope with and adapt to the world’s protean complexity. But it is, in principle and 

unavoidably, slow, and prone to the possibility of error. Intelligence can therefore not 

be increased indefinitely. The impressive performance of AIs is due to algorithms, so 

it is always special and unfolds only along the generative dimension. Intelligence can 

be made faster by discovering and exploiting patterns in the data or the world, but 

such improvements are always special. 

A superintelligence (Bostrom, 2014) is, therefore, in all probability impossible. The idea 

of superintelligence presupposes that intelligence can be increased tremendously and 

boundlessly. But this is wrong. The impressive performance of AIs on special tasks is 

due to the algorithmic nature of these systems and the special regularity of the 

particular tasks at hand. 

An AGI might be possible, but it would be uncontrollable – it might develop away 

from the tasks its users intended it to do – and the accurateness of its results must be 

checked empirically, just like those of human intelligence. Its usefulness is, therefore, 

questionable. An AGI would be protean, i.e., creative in the sense that it can develop 

and change out of the scope of any single theory about it. It would in that sense be 

unpredictable and therefore also uncontrollable in principle. 

An AGI would also be uncontrollable to itself. In some circles, especially those of the 

“Longtermists”[xviii] there is the fear that an AGI could gain control and lead to the 
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lock-in of bad values, resulting in a dystopian future. However, an AGI could not lock 

in forever to a fixed set of values since it would undergo mutations by a process 

outside its control and thus could undergo changes unpredictable and uncontrollable 

to itself. This ability of change is exactly what is required for it to be an AGI instead of 

just a conventional AI. Taking that possibility away would turn it into an algorithm, 

i.e., a conventional AI.[xix] 

Computers are “better” than humans at executing algorithms (just as planes are better 

than people at flying, cars are better than people at moving quickly and flint stone 

blades are better than people’s teeth or fingernails at cutting flesh). We can therefore 

expect to see the development of powerful conventional AI systems incorporating 

formalizable aspects of very large sets of knowledge.[xx] The resulting 

“impressiveness” of conventional AI systems is due to the power of algorithms 

combined with the wide scope of the knowledge or data incorporated into them and 

the regularities present in this data (as far as the learning algorithms could discover 

those regularities). But this knowledge is “flat”. It is purely generative and lacks the 

creative dimension. Increasing the hardware power, using more sophisticated 

algorithms[xxi] and hardware architectures and incorporating ever larger sets of 

training data will, however, not lead to artificial general intelligence (AGI), contrary 

to the expectations of many current observers, including many people working inside 

the AI research field. This line of research is not going to lead to super-intelligence or 

an AGI takeover. 

It might be possible to integrate a creative dimension and thereby to create something 

that could be called AGI, but the resulting systems would not be able to move in the 

direction of the creative dimension with the same impressive speed as they are moving 

in the direction of the generative dimension, since, as discussed above, creativity is 

inherently slow and error prone. Furthermore, since such systems would be inherently 

uncontrollable, the practical usefulness of such a technology, if ever implemented, 

appears doubtful. 

Like other technologies, conventional AI might lead to useful applications, but also to 

disruptive effects on society and to novel ethical and legal problems. It is mainly this 

domain of practical problems resulting from AI applications that philosophers should 

focus on in the context of AI. 
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NOTES 

[i] The arguments presented here can also be found in my speculative essay (Keller, 

2019: section 4). 

[ii] According to (Ammon, 2013), the insights I am referring to here are implicitly 

contained already in a 1944 publication of mathematician Emil L. Post, who, for his 

own formulation of Gödel’s incompleteness theorem introduced the notion of 

“creative sets”. The notion of “productive sets” was introduced by J. Dekker in 1955 

(Dekker, 1955), so these insights are as old as, or older than, the introduction of the 

first AI research program in 1955/1956. However, they have been largely ignored, if 

not even suppressed, by the AI research community ever since. 

[iii] In this article, I use the terms “algorithm” and “program” interchangeably. You 

could also say “app”. In AI-circles, the term “model” is often used instead for 

programs generated by learning algorithms. 

[iv] If you write the outputs of the functions Pn into a table so that the first column 

contains all the outputs from the first function P1, the second column contains the 

output of the second function and so on, then the term Pn(n) denotes the diagonal of 

that table. For this reason, this proof method is known as diagonalization or the 

diagonal method. 

[v] It should be emphasized how elementary this diagonalization argument is: in 

(Rogers, 1987), one of the standard textbooks on computability theory, it is introduced 

on page 10, as part of chapter 1, which presents some introductory concepts and 

prerequisites. As the author also mentions on page 11: “The reader will note an 

analogy to Cantor’s diagonal proof of the nondenumerability of the real numbers[…]”. 

This refers to work by G. Cantor published back in 1891. 

[vi] See (Dekker, 1955). 

[vii] Since programs for arbitrary data that halt for all their inputs can be mapped to 

total functions via Gödel numberings, this also means that general automatic 

programming is not possible. Programming is not completely formalizable. Programs 

producing other programs are either incomplete (i.e., for each such automatic 

programmer, there are programs it cannot produce, or they can also produce programs 

that do not halt for all of their inputs, i.e., that are faulty. If artificial general intelligence 

includes the ability of general programming, this shows already that AGI is impossible 

with algorithms alone. 

[viii] The idea of applying these ideas to AI was introduced first by Kurt Ammon to 

whom I am indebted for many of the ideas presented here. 
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[ix] A Gödel numbering for the training data can be constructed from the learning 

algorithm itself. The learning algorithm has to be a halting algorithm (if it will not halt 

for some inputs, it is useless). For any input, it will have to produce either an error 

message or an algorithm as a result after a finite time. The training data can be 

represented as strings. All strings can be enumerated (essentially ordered by length 

and by the alphabet used) and the learning algorithm can then be used to decide if 

they are well-formed training data. They can then be numbered in the resulting 

sequence. 

[x] Each algorithm calculating a total function enumerates an (infinite) sequence of 

numbers. The algorithm can then be viewed as a compressed form of that sequence 

representing its regularity (pattern) in a finite text. 

[xi] As Ammon has noted, applying the productive function to the algorithm requires 

a reference to the algorithm as a whole. That the algorithm cannot apply the productive 

function to itself and thus break out of its limitations can be viewed as its inability of 

any algorithms to generate a reference to itself as a whole. As a result, what an 

algorithm can compute (and what can be derived in a formal theory – a notion 

equivalent to that of an algorithm) is fixed once and for all: an algorithm cannot 

develop. 

[xii] “Computable” here means the regularity (of a sequence of data or the 

corresponding Gödel numbers) can be represented by an algorithm, i.e., as a finite text 

or as a finite chunk of knowledge. 

[xiii] This result is one of the theorems jokingly known as “full employment 

theorems,” since they show that there are certain tasks that human programmers, 

mathematicians, and scientists can do that can be shown to be impossible to any 

algorithm in the general case. Since my goal here is understandability, I decided just 

to point to Wikipedia on the subject of Kolmogorov complexity, instead of specialist 

literature. References can be found here: 

<https://en.wikipedia.org/w/index.php?title=Kolmogorov_complexity&oldid=112832

2834>. 

[xiv] See (Cubitt et al., 2015, 2018). 

[xv] Named after the god Proteus from Greek mythology, See (Keller, 2019: pp. 120 – 

122). Ammon introduced the similar notion of “Creative Systems,” which says that all 

formal theories of human cognitive processes are incomplete, in principle, see 

(Ammon, 1987). 

[xvi] We should, however, also note that errors cannot be prevented in conventional 

AI systems. Everybody using such systems will have come across instances where the 

systems produced wrong results. Automatic systems are riddled with all the problems 

https://en.wikipedia.org/w/index.php?title=Kolmogorov_complexity&oldid=1128322834.
https://en.wikipedia.org/w/index.php?title=Kolmogorov_complexity&oldid=1128322834.
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of epistemology and there is no general way to guarantee the correctness of programs, 

no matter if these are hand-programmed or produced by other programs. 

[xvii] See (Mager, 1920). 

[xviii] See, for example, (MacAskill, 2022). 

[xix] What really can lead to the lock-in of bad values is not AGI, but accumulation of 

power. Power is self-amplifying by political, military/coercive, and economic means. 

The problem of preventing the lock-in of bad values is, therefore, not a problem 

connected to AGI, but instead the problem of power and of uncontrolled and 

unlimited economic growth (which, strangely, is advocated by the Longtermists) 

which can lead to the accumulation of power in the hands of small groups and is 

therefore, besides the other destructive effects it has, inherently dangerous. However, 

these topics go beyond the scope of the current article. 

[xx] It is a matter of stipulative definition if we want to call such systems “intelligent.” 

Human intelligence has its own generative components, but I follow Ammon in 

viewing creativity as the core of real intelligence. However, creativity as defined by 

Ammon is unformalizable by definition, i.e., it cannot be implemented in terms of 

algorithms alone. In this sense, I don’t view conventional AI systems as truly 

intelligent even if they do things that require intelligence if done by humans. 

[xxi] Note that the arguments sketched above (diagonalization and Kolmogorov 

complexity) do not contain any assumptions on the kind of algorithms used, so they 

are valid no matter what kind of learning algorithms are going to be invented. 
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